Answers-

1. $\mathbf{x + 4} \quad$ Linear polynomial is polynomial with degree 1.
$\mathbf{2 x ^ { 2 } - 6 x + 1} \quad$ Quadratic polynomial is polynomial with degree 2.
$\mathbf{x}^{3}+\mathbf{2} \mathbf{x}^{\mathbf{2}+\mathbf{x}} \quad$ Cubic polynomial is polynomial with degree 3 .
2. $\mathbf{2} \mathbf{x}^{225} \mathbf{+ 3}$ Binomial is a polynomial with exactly two term.
$\mathbf{y}^{110} \quad$ Monomial is a polynomial with exactly one term.
3.

a) False. It has 2 variables x andq
b) True. It is has only 1 variable.
c) False. It has 3 variables t, x \& r
4. Zero. (Every constant term except 0 is Non-zero constant polynomial eg- 7 $=7 x^{\circ}\{d$ egree $=0\}$)
5. $-9 / 2$

Zero of a polynomial can be obtained by equating the polynomial to zero.
$4 \mathrm{x}+18=0$
$4 x=-18$
$x=-18 / 4$
$x=-9 / 2$
6. False Every linear polynomial has one and only one zero.
7.
a) $p(x)=3 x+1$
$p(-1 / 3)=3(-1 / 3)+1$
$p(-1 / 3)=-1+1=0$. Yes. $-1 / 3$ is 0 of
given polynomial
b) $p(x)=16 x+6$
$p(-3 / 8)=16(-3 / 8)+6$
$p(-3 / 8)=2(-3)+6$
$p(-3 / 8)=-6+6=0$. Yes. $-3 / 8$ is a 0 of
the given polynomial.
c) $p(q)=q^{2}-3$
$p(\sqrt{ } 2)=(\sqrt{ } 2)^{2}-3$
$p(\sqrt{ } 2)=2-3=-1 . \quad$ No. $\sqrt{ } 2$ is not a 0
of given polynomial.
d) $p(r)=\pi-4 r$
$p(11 / 14)=\pi-4(11 / 14)$
$p(11 / 14)=22 / 7-(22 / 7)$
$p(11 / 14)=0 \quad$ Yes. $11 / 14$ is 0 of the given polynomial
8. The degree of Zero polynomial is undefined.

These questions are provided from studifysuccess
9. $p(x)=x^{2}-3 x-10$

Factors of constant term (10) $= \pm 1, \pm 2, \pm 5, \pm 10$
At $x=+1 p(x)=-12$
At $x=-1 \quad p(x)=-6$
At $x=+2 p(x)=-12$
At $x=-2 \quad p(x)=0$
So $x+2$ is 1 factor of polynomial.
Writing $x^{2}-3 x-10$ in terms of $x+2$

$$
\begin{aligned}
& =x^{2}+2 x-5 x-10 \\
& =x(x+2)-5(x+2) \\
& =(x+2)(x-5)
\end{aligned}
$$

10.

a)

$$
\begin{aligned}
\text { a) } p(-2) & =7(-2)^{3}+8(-2)-7 \\
p(-2) & =7(-8)-16-7 \\
p(-2) & =-56-16-7=-79 \\
\text { b) } p(1,-1) & =(1+3)\left\{-(-1)^{2}+1\right\} \\
p(1,-1) & =4(0)=0
\end{aligned}
$$

11.

12. As $x-1$ is factor of $7 x+7 x^{2}-k x+4$. So
$p(1)=0$
or, $p(1)=7(1)+7(1)^{2}-k(1)+4=0$
or, $7+7-k+4=0$
or, $18-\mathrm{k}=0$
or, $\mathrm{k}=18$
13. a)

```
(98)}\mp@subsup{)}{}{3}=(100-2\mp@subsup{)}{}{3}.\quad\mathrm{ Using Identity:-
    (x-y)\mp@subsup{}{}{3}=\mp@subsup{x}{}{3}-\mp@subsup{y}{}{3}-3xy(x-y)
=(100)3}-(2\mp@subsup{)}{}{3}-3(100)(2)(100-2
=10,00,000-8-600(98)
=999992-58800
=941192
```

b)

$$
\begin{aligned}
& (1003)^{3}=(1000+3)^{3} \quad \text { Using Identity:- } \\
& \quad(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y) \\
& =(1000)^{3}+(3)^{3}+3(1000)(3)(1000+3) \\
& =1,00,00,00,000+27+9,000(1003) \\
& =1,00,00,00,027+90,27,000 \\
& =1,00,90,27,027
\end{aligned}
$$

14. Zero of a polynomial can be obtained by equating the polynomial to zero. bx=0
$x=0 \quad$ Hence, 0 is the zero of polynomial $b x$.
15. $t-1 / 2=0$
$t=1 / 2$

$$
\begin{aligned}
& q(1 / 2)=-2(1 / 2)^{3}-2(1 / 2)^{2}+1 / 2+1 \\
& \text { or, } q(1 / 2)=-2(1 / 8)-2(1 / 4)+1 / 2+1 \text { or, } \\
& q(1 / 2)=-1 / 4 / 4 / 2+1 / 2+1 \\
& \\
& =-1 / 4+1 \\
& \\
& =-3 / 4 \quad \text { No, } q(t) \text { is not multiple of } t-1 / 2
\end{aligned}
$$

16. $(4 p)^{3}+(6 p)^{3}$

$$
\begin{aligned}
& =\left[U \operatorname{sing} a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)\right] \\
& =(4 p+6 p)\left[(4 p)^{2}-(4 p)(6 p)+(6 p)^{2}\right] \\
& =(10 p)\left[16 p^{2}-24 p^{2}+36 p^{2}\right] \\
& =(10 p)\left[28 p^{2}\right] \\
& =280 p^{3}
\end{aligned}
$$

17. a) $(x+7)(x-3)$
$\left[U \operatorname{sing}(x+a)(x+b)=x^{2}+(a+b) x+a b\right]$
$(\mathrm{x}+7)(\mathrm{x}-3)=\mathrm{x}^{2}+(7+(-3)) \mathrm{x}+(7)(-3)$
$=x^{2}+4 x-21$
b) $(x+6)(x+6)=(x+6)^{2}$
```
[Using \(\left.(x+y)^{2}=x^{2}+y^{2}+2 x y\right]\)
\(=x^{2}+(6)^{2}+2 x(6)\)
\(=x^{2}+36+12 x\)
\(=x^{2}+12 x+36\)
```

c) $\left(16-y^{2}\right)=\left[(4)^{2}-(y)^{2}\right]$
[Using $\left.x^{2}-y^{2}=(x+y)(x-y)\right]$
$(4)^{2}-y^{2}=(4+y)(4-y)$
d) $\left(x^{2}+1 / 3\right)\left(x^{2}-1 / 3\right)$
[Using $\left.x^{2}-y^{2}=(x+y)(x-y)\right]$
or, $\left(x^{2}+1 / 3\right)\left(x^{2}-1 / 3\right)=\left(x^{2}\right)^{2}-[1 / 3]^{2} \mathrm{or}$,
$\left(x^{2}+1 / 3\right)\left(x^{2}-1 / 3\right)=x^{4}-1 / 9$
18. (102)(102)

$$
\begin{aligned}
& =(100+2)^{2} \\
& {\left[U \operatorname{sing}(x+y)^{2}=x^{2}+y^{2}+2 x y\right]} \\
& =(100)^{2}+(2)^{2}+2(100)(2) \\
& =10000+4+400 \\
& =10404
\end{aligned}
$$

19. $y+1=0$

$$
\begin{aligned}
& y=-1 \\
& p(y)=4 y^{3}+2 y^{2}-1 \\
& \text { or, } p(-1)=4(-1)^{3}+2(-1)^{2}-1 \\
& \text { or, } p(-1)=-4+2-1 \\
& \text { or, } p(-1)=-3
\end{aligned}
$$

20. $a y^{2}-k=0$
$a y^{2}=k$
$y^{2}=k / a$
Thus, $y=\sqrt{ }(k / a)$ is 0 of a polynomial
21. [Using $\left.(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x\right]$
$x=2 x$
$y=3 y$
$z=-6 r$
$(2 x+3 y-6 r)^{2}=4 x^{2}+9 y^{2}+36 r^{2}+12 x y-36 r y-24 r x$
22. a) $\left[U \operatorname{sing}(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)\right]$
$(2 \mathrm{p}+7 \mathrm{c})^{3}=(2 \mathrm{p})^{3}+(7 \mathrm{c})^{3} \mathrm{p}+3(2 \mathrm{p})(7 \mathrm{c})(2 \mathrm{p}+7 \mathrm{c})$
b) $\left[U \operatorname{sing}(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)\right]$
$(c-x / 2)^{3}=[c]^{3}-(x / 2)^{3}-3 c(x / 2)(c-x / 2)$
23. $x^{2}+2 x-15$
$=x^{2}+(5-3) x-15$
$=x^{2}+5 x-3 x-15$
$=x(x+5)-3(x+5)$
$=(x+5)(x-3)$
24. $3 x+1=0$
$x=-1 / 3$
As $3 x+1$ is factor of $p(x)=3 x^{2}-t x+2$
So $p(-1 / 3)=0$
or, $3(-1 / 3)^{2}-t(-1 / 3)+2=0$
or, $3(1 / 9)+\mathrm{t} / 3=-2$
or, $(1+\mathrm{t}) / 3=-2$
or, $1+\mathrm{t}=-6$
or, $t=-7$
25. a)

All factors of constant term(120) $= \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6, \pm 8, \pm 10, \pm 12, \pm 15, \pm 20, \pm 24$, $\pm 30, \pm 40, \pm 60, \pm 120$
Using hit \& trial method
At $x=+10$
$p(10)=(10)^{2}-22(10)+120=0$
So $x-10$ is the factor of $x^{2}-22 x+120$
$x^{2}-22 x+120$
$=x^{2}-10 x-12 x+120$
$=x(x-10)-12(x-10)$
$=(x-10)(x-12)$
b)

All factors of constant term(3) $= \pm 1, \pm 3$
Putting $p=1 \quad 2 p^{2}+5 p-3=4$
Putting $p=-1 \quad 2 p^{2}+5 p-3=-6$
Putting $p=32 p^{2}+5 p-3=-3$
Putting $p=-3 \quad 2 p^{2}+5 p-3=0$
So, $p+3$ is the factor of $2 p^{2}+5 p-3$

```
2p}\mp@subsup{}{}{2}+5p-
=2p+6p-1p-3
=2p(p+3)-1(p+3)
=(p+3)(2p-1)
```

26. $(8)^{3}+(-5)^{3}+(-3)^{3}$
$\mathrm{x}=8$
$y=-5$
$\mathrm{z}=-3$
$x+y+z=8-5-3=0$
We know that if,
$x+y+z=0$,then $x^{3}+y^{3}+z^{3}=3 x y z$
So,
$(8)^{3}+(-5)^{3}+(-3)^{3}=3(8)(-5)(-3)$
$=360$
